
NASA Technical Memorandum 104098 P.

(,4"ArA-T>H-!OSOQ6) A CASE STUDY FOR THE

REAL-TIME EXPFRIMFNTAL eVALUATION OF THE

VIPER MICROPROCESSOR (_JASA) 65 D CSCL 09A

G3/33

N91-31531

A Case Study for the Real-Time
Experimental Evaluation of the VIPER
Microprocessor

Victor A. Carre_o

Rob K. Angellatta

September 1991

National Aeronautics and
Space Administration

Langley Research Cenle¢
Hampton, Virginia 23665-5225

A Case Study for the Real-Time Experimental

Evaluation of the VIPER Microprocessor

Victor A. Carrefio and Rob K. Angellatta

Introduction

This paper describes an experiment to evaluate the applicability of the VIPER (Verifi-

able Integrated Processor for Enhanced Reliabifity) microprocessor to real-time control.

The VIPER microprocessor was invented by the Royal Signals and Radar Establishment

(RSRE), U.K., and is an example of the use of formal mathematical methods for devel-

oping digital electronic systems with a high degree of assurance on the system design

and implementation correctness. The design of the VIPER microprocessor was guided by

several criteria and restricted by engineering and verification methods including:

• Developing a microprocessor for use in safety-critical applications [4].

• Architectural complexity restrictions imposed by limitations of the methods used to

verify correctness of design and implementation [5].

• Instruction set and architectural characteristics that will 'encourage' the production

of safe software programs and hardware designs.

• Creating gate level descriptions of the microprocessor for verification as well as silicon
fabrication.

The simplicity of the VIPER instruction set as well as its architectural design has

resulted in throughput performance penalties. Thus, an experiment was conducted to

assess the VIPER characteristics when used to perform real-time control law computations.

A description of the VIPER microprocessor is presented in the next section.

The experiment consisted of selecting a control law, writing the control law algorithm

for the VIPER processor and providing real-time, dynamic inputs to the processor and

monitoring the outputs. The control law selected and coded for the VIPER processor was

the yaw damper function of an automatic landing program for a 737 aircraft. A dynamic

model of a 737 aircraft, running on a Digital Equipment Corporations (DEC) VAX-ll/750

(VMS) computer, was then controlled by the automatic landing program of which the yaw

damper portion was running on the VIPER Single Board Computer (SBC).

The mechanismsfor interfacing the VIPER SBCto the VAX host aredescribedin the
Interfacesection.The yawdampercontrol law aswell asthe Vista programminglanguage
for the VIPER are describedin the section Control Law. The section .Results presents

run time experiences, performance evaluation, and comparison of VIPER and FORTRAN

yaw damper algorithm output for accuracy estimation.

The VIPER Microprocessor and Single Board

Computer

VIPER

The VIPER microprocessor was developed as part of a program to "...devise means of

writing formal specifications for safety and security critical hardware and then prove that

a particular realization of this specification conforms with the top level requirement." The

VIPER top level specification was written in LCF-LSM (Logic of Computable Functions-

Logic of Sequential Machines)J8]. At the lower, electronic block model level the VIPER

was described in both LCF-LSM and ELLA [10], the latter description used to interface

with VLSI CAD tools and to provide for modeling of some physical characteristics.

The VIPER major state machine description was formally verified against the top

level specification using the HOL [9] mechanized theorem prover. This work is described

in reference [2]. An electronic block model description was generated in the HOL system

logic and many properties of the block model were verified as described in reference [3].

Extensive simulation of the VIPER top level specification was also performed by RSRE

using an 'animation' of the specification written in Algol68 and ML [6,13]. Simulations of

the major state machine and block model were also performed using Algol68 and ELLA

respectively [5].

The VIPER is a 32-bit processor with a 20-bit memory address space and 20-bit pe-

ripheral space. A unique feature of the processor is a STOP state were the processor

halts operation due to an illegal input or internal condition. Some of these conditions will

be discussed in this section. The processor has 3 general purpose 32-bit registers, A, X

and Y; a 20-bit program counter register P; and a one bit flag register B. Figure 1 is a

block diagram of the VIPER architecture. Instructions are single 32-bit words. The 32-bit

instruction word is divided into two fields, a 12-bit function (opcode) field and a 20-bit ad-

dress/data field. The addressing modes supported by the processor are immediate, direct,

and indexed addressing. Arithmetic and logical instructions, with the exception of shift,

are of the form D := R op M, where D is the destination register, R is a 32-bit operand

from a register, and M is a 32-bit operand from memory or a 20-bit operand from the

address/data field of the instruction. Destination D can be any of the registers A, X, Y

or the program counter P. Since the program counter is 20-bit long, attempting to load

a binary number greater than 20 bits (i.e. a I in any of the higher 12-bits) will cause a

STOP condition. The operand R can be registers A, X, Y or program counter P. When

operand M is the 20-bit address/data field or operand R is the program counter P, the

operand will be 'padded' with zeros for the top 12 bits.

2

The]2-bit opcode field is divided into five subfield for instruction decoding. The
opcodesubfieldsare:

• 2-bit source register field

• 2-bit memory field

• 3-bit destination field

• 1-bit comparison field

• 4-bit function field

Table 1 shows the operations for the 4-bit function field. The following instructions in

the table wiU cause the processor to STOP for the given condition:

Y:= PthenP:=M

D:=R+M

D:=R-M

D:=R*2

spare instruction

stop ifM >22°-1

stop on overflow

stop on overflow

stop On overflow

stop if encountered

A complete description of the instruction decoding format as well as other conditions

that will cause the processor to STOP can be found in reference [10].

Single Board Computer

The VIPER SBC was designed and fabricated at RSRE for evaluation purposes. One

SBC assessment board was made available to NASA Langley Research Center (LaRC)

under a cooperative agreement with the U.K. Ministry of Defense (MOD). The main

components of the SBC used in this experiment are clock generating circuitry, a VIPER

microprocessor, an Intel 8039 microprocessor, 8k bytes of 32-bit VIPER RAM, 32k bytes

of 8-bit PROM where a VIPER test program resides, and 4k bytes of 8-bit PROM for the

8039 processor. A block diagram of the SBC is depicted in figure 2. The function of the

8039 processor is to control the operation of the VIPER processor, to load the VIPER

RAM and to communicate with a terminal or host computer via an RS232 port. The

8039, interpreting a series of instructions invoked from the terminal or host computer, will

allow the experimenter to:

load the PROM test program into the VIPER RAM

load a VIPER instruction into any arbitrary RAM location

load a file, directly by typing on the terminal, or from a host computer file system

step the VIPER clock n half clock cycles (for n = 1,2,3 ...)

execute n VIPER instructions (n = 1,2,3 ...)

* executeuntil program counter contains address z, where z is specified by the user

• let the VIPER clock run freely

Other functions are possible and are described in detail in reference [1].

Experiment

The yaw damper control law algorithm of a 737 autoland program was selected for the

experiment. The yaw damper was coded for the VIPER SBC and is described in the

section Control Law. A block diagram representation of the software organization of the

experiment is illustrated in figure 3. In this figure the boxes represent software code and
the interconnection lines are as follows:

UNIBUS The UNIBUS subsystem provides for communications between I/O devices

and the VAX-11/750 processor. The asynchronous, bidirectional UNIBUS is the

standard interconnect for attaching low and medium speed peripheral devices to the

VAX-11 family of computer systems.

DSS The DSSll peripheral provides UNIBUS compatible computer systems with digital

input capabilities. Manufactured by Digital Equipment Corporation, the DSS11

module consists of 49 optically isolated inputs, which includes 48 nonbuffered sense-

data inputs and one interrupt input.

DRS The DSS companion peripheral, the DEC DRSll provides UNIBUS compatible

computer systems with digitial output capabilities. The DRSll module consists of

48 open-collector buffered outputs plus one interrupt input.

Interface Board Designed and Fabricated at LaRC to interface the DRS and DSS to

the VIPER SBC through two 64 pin connectors on the SBC. A description of the
Interface Board is in section Interface.

Subroutine Call Calls from the main body of the autoland to functions and procedures.

For the purposes of the experiment, the code implementing the yaw control sys-

tem resides on the VIPER SBC. The Subroutine Call to yaw damper represents a

subroutine call to the module responsible for communicating with the VIPER SBC.

Device Driver A specific component of the VMS operating system software, the device

driver is responsible for all communication between the application software and the

specified hardware - the DRS and DSS peripherals. The Device Driver Call, as

depicted in the diagram, represents the application software's interaction with the

VMS operating system software.

Sensor Inputs The sensor inputs are physical parameters generated by the 737 simulator

according to flight conditions. They are used as the input to the autoland control.

Sensor inputs include air speed and rudder deflection.

Actuator Control Outputs The autoland generates output signals that control surface

actuators. The surface deflections resulting from the autoland commands together

with external conditions are used by the 737 simulator in a closed loop to model

flight conditions.

The autoland program is a linear control system that runs in real time simultaneously

with the aircraft simulation. It is coded in FORTRAN and was slightly modified for the

experiment. When the yaw damper subroutine of the program is invoked, communication

is established with the SBC. The autoland program will pass four values to the VIPER

yaw damper and wait for the computation result. If the result is not computed within a

preset time-out period, autoland execution will be aborted and an error flag raised in the
host machine.

A double precision FORTRAN version of the yaw damper was also coded for accuracy

measurements. Different autoland configurations can be used during experiment runs

where any or all of the yaw damper algorithms are executed. This allows for comparison

of the computed values for all inputs during simulated landings.

The simulated landings start at four different, user selectable, altitudes and horizontal

locations. The user also selects wind direction, wind velocity, and gust amplitude. For

this experiment, wind direction was varied from zero degrees (head-on wind) to 90 de-

grees (cross wind) in reference to the runway orientation. Wind velocity was varied from

zero knots to the maximum wind which will not exceed landing restrictions. Maximum

wind landing restrictions were taken to be 40 knots head wind and 15 knots cross winds.

Therefore, for wind direction angles (with respect to the runway) between zero and 20.56

degrees, wind speed was varied between 0 and 40/cos 0 knots. For angles between 20.56

and 90 degrees, speed was varied between 0 and 15/sin 0 knots. The wind gust amplitude

was set to 5/3 of the constant wind velocity.

For each of the three routines implementing the yaw damper algorithm, single preci-

sion FORTRAN, double precision FORTRAN, and VIPER, 3600 simulated landings were

performed. Each landing lasts approximately 3 minutes and the yaw damper subroutine

is invoked 20 times per second.

Interface

A communications interface between the host VAX-11/750 and the VIPER SBC was devel-

oped employing a set of DEC DSSll/DRSll 48 channel digital I/O modules and a custom

designed interface board. This communication arrangement provides for fast parallel ex-

change of data in real time and was used as the most convenient way of implementing the

experiment. The communication link was not intended to be a high integrity design.

The DSS11 module is a UNIBUS peripheral furnishing the VAX with digital input

capabilities; specifically, 48 nonbuffered sense-data inputs and a single interrupt input

are available with each DSSll module. A single DSSll module residing on the VAX

provides an input path from the interface board. Data is transferred from the interface

board to the VAX through two registers fashioned from 40 of the 48 input channels of the

DSSll module. As depicted in figure 4, the result register provides a 32-bit data register

for transferring application data. The status register provides an 8-bit data register for

transferring status information to the VAX. Additionally, the interface board signals the

VAX when input data is available through the DSSll interrupt input.

The DRSll module is a UNIBUS peripheral giving the VAX digital output capabilities.

Each DRSll module consists of 48 open-collector buffered outputs and a single interrupt

input. A single DRSll module connected to the VAX comprises the output path to the

interface board. Similar to the VAX input path, the VAX output to the interface board

consists of two registers fashioned from the DRSll module. A 32-bit wide data register

handles the application data transfer and an 8-bit wide identification register provides
additional control information.

The interface board, IB, was designed specifically to perform a data exchange without

hand shaking or data acknowledgement. This was necessary since the DSS and DRS

boards do not contain any control lines apart from an interrupt line. Figure 4 shows 40

data lines going from the DRS to the IB, 41 lines going from the IB to the DSS, 40 data

lines and an interrupt line, 32 bidirectional data lines from the IB to the VIPER SBC,

and 8 control/address lines from the VIPER SBC to the IB. The timing diagrams for the

IB are in figures 5a and 5b. During a read cycle the IB will respond in a maximum of

77 ns which is within the I50 ns requirement of the VIPER short read cycle as shown in

figure 5a. During a write cycle, figure 5b, the IB data (DATAI) are stable at the time of
the latch clock. Figure 6 is the IB schematic.

Five data values are exchanged between the VIPER SBC and the VAX. Four values

(the input for the yaw damper) are requested by the VIPER SBC and one value (the

result) is sent from the VIPER SBC to the VAX after computation has taken place. The

VIPER SBC input request is performed by writing a request code to the status register

and simultaneously issuing an interrupt. The VIPER SBC will then poll the 8-bit data

identification register until the data requested appears on the register. The VAX will

service the interrupt by reading, through the DSS board, 40 bits from the result and

status registers and checking the 8 most significant bits (the status register). The VAX
will then write to the DRS the data requested.

Since this sequence is completely asynchronous, the data in the data input and data

identification registers could be latched when the lines are unstable, i.e. when the DRS is

updating the values, as in figures 7b and 7c. The two possible cases are shown in these

figures. First, the expected value is in the identification register (figure 7b). However,

the data may or may not be valid in the data input register. Therefore, a second latch

is performed on the data input and identification registers. If the expected value is in

the identification register a second time, the data input register is read and it's content

taken as good data. If the expected value is not in the identification register a second

time, an error handler is invoked. In the second case (figure 7c) the expected value is not

in the identification register and polling continues. Two more latches will be performed

thereafter. As in the first case, if the expected value is not present two consecutive times,

an error handler will be invoked. During the experiments, no error handler calls were

issued. In figure 7a all latching occurs while the input data is stable. A flow chart of

the polling algorithm is shown in figure 8. The VIPER SBC sends the result of the

computation by writing it to the result register and then writing a result code on the

status register and simultaneously issuing an interrupt (interrupts are issued every time

the status register is written to). The VAX will service the interrupt by reading the result

and status registers as above. Since a result code exists in the status register, the 32 least

significant bits will be used as the result from the VIPER yaw damper.

Control Law

Vista

The control algorithm was written using the Vista programming language. Vista is de-

scribed as a high-level assembly language [11]. It was designed including only constructs

that will allow effective static code analysis. Recursion, GOTO statements, and pointers

are not possible in Vista. Vista instructions correspond, in most cases, one to one with

VIPER machine instructions. Compound instructions can be clearly decomposed into

their single constituencies as in the following example. The instruction

WHILE (A:= varl; A := A + var2; var3 := X) A < var3
DO

• • •

OD;

is a sequence of instructions as follows:

A := varl;

A := A + var2;

var3 :=X;

TEST A < var3;

JUMP IF;

• • •

JUMP;

The actual location where the target program will be placed in memory is determined

by the programmer using region declarations. Four types of regions are possible: CODE,

DATA, CONST, PERI. There can be more than one region of each type, as demonstrated

in the following example declaration.

CODE main_program FROM 0 TO 511;

CODE first_procedures FROM 4096 TO 5119;

CODE second_procedures FROM 5120 TO 6143;

DATA global FROM 512 TO 1023;
CONST fix FROM 1024 TO 2047;

PERI io FROM 112 TO 114;

7

The directive CODE IN is usedbeforecodeto changethe selectedregion. For example

CODE IN second_procedures
PROC lucy:

END;
PROC george:
oo.

END;

CODE IN first_procedures
PROC sarah:

END;

will place procedures lucy and george in region second_procedures and procedure sarah

in region first_procedures.

Variables have to be declared before they are used in the program or procedure. Three

types of variables can be declared: INT, a 32-bit integer number; BITS, essentially the

same as INT; and CHAN, a variable that can only be used with instructions INPUT and

OUTPUT and defines an input/output address. DATA and CONST regions are used for

variables and constants respectively. The region PERI will assign the address space for

input/output. In the following sequence, light will be associated with I/O address 8 and

speed with memory address 2048. The sequence will produce output of register X to I/O

address 8, register A to l/O address 9, and register A to I/O address 1024.

DATA global
PERI actuators

PERI terminal

PERI IN actuators;

INT speed;

CHAN light,water_valve;

ooo

OUTPUT X, light;

OUTPUT A, water_valve;

PERI IN terminal;

CHAN screen;

.o,

OUTPUT A, screen;

FROM 2048 TO 3071;

FROM 8 TO 16;

FROM 1024 TO 1025;

Yaw Damper

The yaw damper control is a third order control system with three integrators, a clamping

function, and a non-linear interpolation function implemented by a look-up table. The

s-plane transfer function of yaw damper is shown in figure 9. Integration is performed using

8

a trapezoidal numerical approximation. The two inputs to the yaw damper are: CAS,
calibrated air speedin knots; and RBDEG, rate of changeof yaw in degreesper second
(yaw rate). Two additional inputs are necessaryin the computational implementation:
RESET and T(time). The output is DELRYD, rudder deflectiondue to yaw damper.
The yaw damperoutput is combinedwith the rudder command,DELRC, to producethe
actual rudder deflection,DELR. The yaw damperoutput is limited to -4 to +4 degrees,
and the total rudder deflectionto -24.999to 24.999degrees.

The implementationalgorithm for the VIPER yaw damper waswritten using scaled
integer arithmetic and specialpurposemultiplication and division procedures.Multipli-
cation and division are not implementedin hardwareon the VIPER microprocessorand
Vista-VIPER doesnot provide floatingpoint arithmetic. The multiplication procedure,
SMULT (scaledmultiplication), delivers the product of the two factors divided by 231:
SMULT(A,X) = ,4.x For the implementation in this experiment, the factor X was always2-n-.
taken as positive and A could be positive or negative in two's complement representation.

Multiplication is implemented by partial product additions and right shifts. The 31 least

significant bits have been truncated at the end of multiplication from a 63-bit product.

This method allows full usage of the 32 bits to represent a number. Division is imple-

mented in the inverse way by: SDIV(A,X) = x . 231. In this implementation A and X

could be positive or negative in two's complement representation. Since the largest posi-

tive number in two's complement (using 32 bits) is 2al - 1, when [AI < IX[the quotient

will be 231 - 1 or 2 _1 for positive or negative quotients respectively. If division by zero is

performed (A=0) the same result as [A[_< IX I will be obtained.

Scaling of variables is static. It was performed by analyzing each variable and deter-

mining it's maximum range. The scale factor is 231 divided by the sm_est power of two

which is larger than the maximum variable value. For example variable CAS was deter-

mined to have a range of 0 to 1000 knots, The smallest power of two larger than 1000

is 1024 = 21° thus the scale factor is 2 _1. Table 2 shows variable maximum ranges and

scale factors. Variables in the table correspond to variables on figure 8. The Vista and

FORTRAN yaw damper algorithms are in appendix A and B respectively.

Results

During preliminary testing of procedures, three software errors caused the VIPER to

enter the STOP state. Two of the errors were in the multiplication procedure and due to

overflow. The first instance of overflow was due to a mathematical shift-right being used

where a logical shift should have been used. In a mathematical shift-right the sign bit

(MSB) is copied and when absolute binary numbers are used it does not implement the

desired division by two function. The second error was introduced when the mathematical

shift was replaced by a logical shift through register B. Register B was altered by the

logical shift instruction and therefore not set properly for the next instruction as before

the change. The third error was in the main program and all procedures. It was discovered

when testing procedure ONED and was due to incorrect use of array indexes. When art

array VECT[n] is declared, valid index range is 0 to n-1. The range 1 to n was incorrectly

usedcausing the error. During more than 3600simulated landing runs the VIPER did
not enter the STOP state.

A synchronizationproblem was also encounteredbetweenthe VIPER SBC and the
VAX host. It appearsthat the VAX host waslosingsomeof the interrupt signalswhich
causedboth VIPER and the VAX host to wait for eachother with a subsequenttime
out. Checkswith a digital analyzerconfirmedthat interrupts werebeen issuedby the
interfaceboard (IB) and lost betweenthe DSSand the VAX. The conditionwasobserved
approximatelyevery4 landingsor 72,000interrupts. After the VAX hostwasremovedfrom
the local DECNET network and al] nonessentialprocessesshut-down,the lost interrupts
were significantly reduced to approximately 1 every 2,000,000interrupts. The testing
proceededwith this configuration.

Timing of the VIPER yawdamperalgorithm revealedthat, excludinginputs and out-
puts, it took approximately 5.5 ms for total execution. 4.7 ms wereused by the multi-
plication procedureand 0.6 ms by the division procedure. Ten multiplications and two
divisionswereperformedper call. Note that for this implementationof the yaw damper
function, excludinginputs andoutputs, 96.36percentof the total executiontime wasspent
performingarithmetic operations. It is very likely that all procedurescould be optimized
to improveperformance.

The accuracy of the VIPER and FORTRAN yaw dampers was checkedagainst a
doubleprecisionfloating point FORTRAN version. The accuracywasmeasuredin terms
of maximum relative error, maximum absoluteerror, averagerelative error, and average

absolute error. This parameters were calculated as follows:

VIPorFORouti - Refi)mazimum_relative_error = MAXi_=I(ABS \ _)

mazimum_absoIute'error = MAX_=I(ABS(VIPOrFORout,- Refl))

/ VlPovFOIZtouts-Re[i Iaverage_relative_error= i=_ ABS [R_,

average_absolute_error = _ ABS VIPorFO___outi - Refi
i=l

where

MAX is the largest number out of n numbers in a single landing run,

ABS is the absolute value,

VIPorFORout is the VIPER or FORTRAN yaw damper output value, and

Ref is the double precision reference value.

10

In three cases out of 3600 the VIPER maximum relative error was greater than the

FORTRAN version. In all cases the VIPER maximum absolute and the average relative

and absolute errors were smaller than the FORTRAN version as compared with the dou-

ble precision yaw damper. The average relative VIPER error was typically half that of

the FORTRAN. This demonstrates that an accuracy comparable with a floating point

algorithm can be achieved with an integer number algorithm by using scaling methods.

An example result for a landing run is given in table 3.

Conclusions

The VIPER microprocessor performance is in the 0.5 to 0.7 million instructions per second

(native MIPS) range. The lack of built-in multiplication significantly decreases the effective

performance of the processor. The VIPER processor is suitable for embedded applications

as demonstrated in this experiment. Approximately 10 subroutines, equivalent to the yaw

damper, could be run in real time by a VIPER processor.

Since floating point representation is not provided in the Vista-VIPER environment,

variable scaling is necessary in most control applications. Detailed knowledge of the con-

trol algorithm allows the programmer to fully exploit the 32-bit integer representation.
Intermediate arithmetic results create an extra burden on the programmer as he/she must

ensure that no overflow occurs. An accuracy penalty must be paid if the maximum value

range resulting from an arithmetic operation is not known. Also, the ordering of arithmetic

operations must be considered.

Based on previous experiments conducted at AIRLAB on redundant, reconfigurable

systems it was found that the redundancy management takes a considerably large amount

of CPU time. For instance, the Software Implemented Fault-Tolerace (SIFT) computer's

operating system overhead consumes a minimum of 50 percent of the frame size [12]. The

SIFT CPUs, the Bendix BDX 930, has a performance of approximately 0.9 MIPS [7],

slightly greater performance than the VIPER SBC. Therefore, it is the opinion of the

writers that the VIPER processor, having a limited performance capability, would be in-

adequate for redundant multlchannel systems where redundancy management (including

fault detection, isolation, and reconfiguration) and task scheduling are done dynamically.
The overhead associated with these tasks will consume most of the VIPER processing

capability. Strategies for dynamic task scheduling and many aspects of redundancy man-

agement are, at the time of writing, not formally verifiable for real-time systems; thus,
these features are not recommended for use in safety critical systems. Systems which

employ dedicated circuitry for multichannel functions will be more amenable for VIPER

use.

References

[1] Bradford, P. J., Kershaw, R. J. W., Moss, P. RSRE VIPER Assessment Board. RSRE

Divisional Memo CC2 405-86, June 1986.

11

[2] Cohn, A. J., A Proof of Correctness of the VIPER Microprocessor: The First Level.

University of Cambridge Computer Laboratory, Technical Report 104, January 1987.

[3] Cohn, A. J., Correctness Properties of the I_TPER Block Model: The Second Level.

University of Cambridge Computer Laboratory, Technical Report 134, May 1988.

[4] Cullyer, W. J., VIPER Microprocessor: Formal Specification. RSRE Report 85013,
October 1985.

[5] Cullyer, W. J., Implementing Safety-Critical Systems: The VIPER Microprocessor.

RSRE Divisional Memo CC2 411-87, August 1987.

[6]

[7]

[sj

[9]

[10]

Cullyer, W. J., VIPER: Simulation of Specification - User's Guide. RSRE Memo-

randum 3972, September 1986.

Goldberg, J., et at., Development and Analysis of the Software Implemented Fault-

Tolerance (SIFT} Computer. NASA Contractor Report 172146, February 1984.

Gordon, M. J. C., LCF-LSM, A System for Specifying and Verifying Hardware. Uni-

versity of Cambridge Computer Laboratory, Technical Report 41, September 1983.

Gordon, M. J. C., HOL: A Machine Oriented Formulation of Higher Order Logic.

University of Cambridge Computer Laboratory, Technical Report 68, 1985.

Kershaw, R. J. W., VIPER: A Microprocessor for Safety-Critical Applications. RSRE

Memorandum 3754, December 1984.

[11] Kershaw, R. J. W., Vista User's Guide. RSRE Divisional Memo CC2 401-86, April
1986.

[12] Palumbo, D. L., Butler, R. W., Measurement of SIFT Operating System Overhead.

NASA Technical Memorandum 86322, April 1985.

[13] WikstrSn, 4., Functional Programing Using Standard ML. Prentice Hall, 1987.

12

Appendix A: Vista-VIPER Yaw Damper Program

the Vista program

-- Program to run a yaw damper control law in the VIPER SBC using data

-- values from the VAX 737 autoland. The computed value is DELRYD

-- ruder deflection due to yaw damper and is writen to the VAX through the

-- VIPER VAX interface board.

-- written by: Victor A. Carreno

-- vac©airl2.1arc.nasa.gov

-- date: March 30,1990

-- last modified Aug 13, 1990

PROGRAM yaw damper:

CODE main FROM 0 TO 511 ;

CODE proc FROM 528 TO 3071 ;

DATA local FROM 3100 TO 3200 ;

DATA global FROM 3202 TO 3400 ;

CONST fix FROM 4064 TO 4095 ;

PERI io FROM 0 TO 15 ;

DATA IN global;

CODE IN main;

INT var[5], svar[5]; -- var[O] = not used, var[l] = CAS,

-- var[2] = RBDEG, var[3] = RESET, var[4] = T

INT ys5; -- control loop state

INT state[4]; -- integrators states

INT olindex; -- interpolate procedure state

INT xst [9]; INT fst[9]; -- value array

CHAN dummyl,iregO,iregl,dummy2; -- dummy1 -> 0000, iregO -> 0001, iregl -> 0010

CHAN ireg2,dummy3[3],ireg3; -- dummy2 -> 0011, ireg2 -> 0100, ireg3 -> iO00

Y := O;

ys5 := Y; state[l] := Y; -- initialize control loop and integrator states

state[2] := Y; state[3] := Y; -- this is not necesary if the first call to

-- yaw damper is in reset mode.

13

Y := I;

olindex := Y;

-- table for PROC oned; interpolation procedure

-- input output

-- CAS KPSDOT

A := O; X := 2147483648; -- 0.0, I

xst[1] := A; fst[1] := X;

A := 209715200; X := 2147483648; -- 100.0, 1

xst[2] := A; fst[2] := X;

A := 256691405; X := 1642824991; -- 122.4, 0.765

xst[3] := A; fst[3] := X;

A := 316250522; X := 1309965025; -- 150.8, 0.610

xst[4] := A; fst[4] := X;

A := 432013312; X := 1073741824; -- 206.0, 0.500

xst[5] := A; fst[5] := X;

A := 612368384; X := 848256041; -- 292.0, 0.395

xst[6] := A; fst[6] := X;

A := 943718400; X := 665719931; -- 450.0, 0.310

xst[7] := A; fst[7] := X;

A := 2097152000; X := 665719931; --1000.0, 0.310

xst[8] := A; fst[8] := X;

WHILE TRUE

DO

CALL get; -- input CAS, RBDEG, RESET, T

-- CALL scale; -- convert floating to int and scale

CALL control; -- execute control law

CALL put; -- output DELRYD

CALL delay -- delay XXXus before next input

OD;

STOP; -- end yaw damper

-- ******* FIRST LEVEL PROCEDURES *******

-- ******* called from the main program

CODE IN proc;

DATA IN local;

FROC get: -- get values from interface board

14

-- (inputs, none)

-- (outputs, var[1..4])

-- (calls, error with A = 1)

-- (destroys, A, X)

BEGIN

INT vtemp,index;

X := I; -- read values i..4 using X as index starting with one

WHILE X < 5

DD

OUTPUT X, iregl; -- output to iregl will issue an interrupt.

index := X; -- request value(X)

WHILE (A := INPUT ireg3; A := I AND 16rFF) A /= index

DO -- Read until requested

-- value is in registers.

SKIP -- ireg3 is label of data in ireg2.

OD; -- reg3 is 8 bits long so is ANDed with O00000FF

vtemp := A; -- when requested value is in registers, save

A := INPUT ireg3; -- label and read second time to avoid

A := A AND 16rff; -- unstable data error.

IF A = vtemp -- check second value

THEN A := INPUT ireg2; -- good data

var[X] := A -- load value

ELSE A := 1; CALL error

FI;

X := X + I; -- increment index

Y := 16r800; -- Delay to avoid VAX missing

WHILE (Y := Y - i) Y /= 0 -- next interrupt (approx. Xms).

DO SKIP

OD

OD

END; -- end get

PROC scale:

BEGIN

SKIP

15

END; -- end scale

PROCcontrol:

BEGIN

INT nfour = -536870911; -- -4 scale I = 2"27

INT four = 536870911; -- 4 scale I = 2"27

INT zp955 = 2050846884; -- 0.955 scale I = 2"31

INT zp57 = 1228092215; -- 0.571895 scale 1 = 2"31

INT zp84 = 1803886264; -- 0.84 scale 1 = 2"31

INT ysl, ys3, ys7;

IF (Y := var[3]) Y /= 0 -- if reset then

THEN Y := O; ys5 := Y FI; -- i.c. YS5 = 0

A := var[1]; -- scaled CAS; 1 =2"21

CALL oned; -- CAS in A, KPSDOT in A on return

X := A; -- put KPSDOT in X; 1 = 2"31 = 2.147483648x10"9

-- KPSDOT allways positive <= 1

A := vat[2]; -- scaled RBDEG; 1 = 2"26

CALL smult; -- VYS1 = RBDEG * KSDOT; I = 2"26

X := zp84;

CALL smult; -- YSI = VYSI * .84; 1 = 2"26

A := A ADD O; -- clear B

A := A<<I; -- scale YS1 to 1 = 2"27

X := 1; -- first order lag #1

CALL folag; -- YS2 = folagl(YS1); 1 = 2"29

X := 1; -- w out #1

CALL wout; -- YS3 = wout(YS2); i = 2"30

ys3 := A; -- save YS3

X := zp955; -- scale 1 = 2"31

A := ys5; -- 1 = 2"29

CALL smult; -- A := YS6 = YS5 * 0.955; 1 = 2"29

X := 2; -- first order lag #2

16

CALL folag; -- A := YS7 = folag2(YS6); I = 2"31

A := A/2; -- scale YS7 to 2"30 for addition

ys7 := A; -- i = 2"30

X _:= ys3; -- I _ 2"30

Y := vat[4]; -- Y := T

IF Y = 0 THEN ys7 := X FI; -- if Time = 0 then YS7 := YS3

A := X - ys7; -- YS5PI = YS3 - YS7; I = 2"30

A := A ADD O; -- clear B

A := A<<I; -- scale YSSPI to 2"31

X := zp57; -- 9.15 scale I = 2"27

CALL smult; -- YS5P2 = YS5PI*9.15; I = 2"27

IF A < nfour THEN A := nfour FI; -- make nfour & four 4.2"27-I

-- to avoid overflow to bit 32

-- making a positive number negative

-- on the YS5 scaling Below.

-- when YS5 = 4 then A = 2"31-I

IF A > four THEN A := four FI; -- YS5 = -4 < YS5P2 < 4

A := A ADD O; A := A<<I;

A := A ADD O; A := A<<I; -- scale YS5 to I = 2"29

ys5 := A -- update YS5

END; -- end control

PROC put: -- send value in A to interface board

BEGIN

X := 16rff;

OUTPUT A, ireg0;

OUTPUT X, iregl -- genarate interrupt with X in control reg

END; -- end put

PR0C delay:

BEGIN

Y := 16ri000; -- approx Xms.

WHILE (Y := ¥ - I) Y /= 0

DO SKIP

OD

END; -- end delay

17

-- ****** SECOND LEVEL PROCEDURES ****** --

-- ****** called from other procedures

PROC oned:

-- input in A CAS

-- output in A KPSDOT

BEGIN

INT driver,sda,sdx; -- local variable

X := olindex; -- global variable

driver := A; -- driver = CAS

WHILE A > xst IX]

DO X := X + i OD;

WHILE A < xst[X]

DO X := X - I OD;

olindex := X; -- update olindex

Y := X + I; -- Y := olindex + I

A := xst[Y]; -- xst[x+l]

A := A - xst[X]; -- xst[x+l] - xst[x]

X := xst[Y]; -- xst[x+l]

X := X - driver; -- xst[x+1] - CAS

CALL sdivide; -- X/A ; X < A

-- ratio = (xst Ix+l] - CAS)/(xst [x+l]-xst [x])

X := olindex; -- restore index in X

Y := X + 1;

X := fst[X];

X := X SUB fst[Y]; -- fst[x] - fst[x+l]

-- (fst Ix] - fst Ix+l]) is allways positive

-- An unsignned operation, SUB, is used since

--fst[1]=fst[2]=l is represented as '8000' which

-- is equivalent to -2147483648

-- -2147483648 minus any nmnber cause a neg overflow

CALL smult; -- ratio*(fst [x] - fst Ix+l])

X := olindex;

¥ := X + 1;

A := A + fst[¥] -- A := KPSDOT = ratio*(fst[x]-fst[x+l]) + fst[x+l]

18

END; -- end oned

PROC folag: -- first order lag; scale of output is 4 times scale of input

-- (inputs : A,X,etau[X],ometau4[X],reset=var[3],state[X])

-- (outputs: A,state[X])

-- (calls: smult)

-- (destroys: A,X,Y)

-- time constants etau = e'-h/tau h:integration time step h=O.05 seconds

-- ometau4 = (1-etau)*4 (one minus etau times 4)

-- previous state in global state state[X]

-- global reset; X selects which and type of integrator

-- integrator input in A; output in A

BEGIN

INT etau[3], ometau4[3]; -- integrators time constant

INT ivselect, Iv1, input; -- local variables

IF (Y := var[3]) Y /= 0 -- if reset then assign constant values, scale

-- input to state and output,

THEN -- and make output = input

Ivselect := X;

X := 2115480017; -- e'-0.05/3.33

etau[1] := X; -- 0.985097148 II

X := 2146141889; -- e'-0.05/80 II

etau[2] := X; -- 0.999375195 [I

X := 128014524; -- (l-etau)e4 II

ometau4[1] _=X; -- 0.059611408 II

X := 5367034; -- (1-etau)*4 II

ometau4[2] := X; -- 0.002499220 \/

A := A ADD O; -- clear B

A := A<<I;

A := A ADD O; -- clear B

A := A<<I; -- A := A*4

X := Ivselect;

scale 2"31

state[X] := A -- update state and return from reset with

-- output = input

ELSE -- no reset

Ivselect := X; -- save select value

X := ometau4[X]; -- X := (1- etau)*4 scale 1 = 2"31 (bit32 -> I)

CALL smult; -- scaled multiplication; factors in A and X

lvl := A; -- save product [(1-etau)s4]*INPUT

X := ivselect; -- get integrator select value

19

A := state[X]; -- get previous state of this integrator

X := etau[X];

CALL smult; -- etau_state

A := A + Ivl; -- etau*state + (l-etau)*4*INPUT -> OUTPUT

X := Ivselect;

state[X] := A -- update integrator stats

FI

END; -- end of folag

PRUC wout:

BEGIN

INT lin,nsmi; -- local variables

INT etau = 1513835370; -- e'-0.05/.143 = 0.704934527 scale 2"31

INT tau = 1228360647; -- 0.143 scale 2"33

IF (Y := var[3]) Y /= 0 -- if rest then

THEN

state[3] := A; -- make state = input

A := 0 -- make output = 0 and return

ELSE

X := state[3]; -- get previous state scale 2"27

lin := A; -- put input in lin scale 2"27

A := X - lin; -- pstate - in

X := etau;

CALL smult; -- etau*(pstate-in)

nsmi := A; -- new state minus input

A := A + lin; -- nswstate = etau*(pstate - in) + in

state[3] := A;

Y := O;

X := Y - nsmi; -- in - state = in - (etau*(pstate-in)+in)

.... (etau*(pstate-in)

-- = -nsmi

A := tau; -- 0.143 scale I = 2"33

CALL sdivide; -- A := wout = (in - state)/tau scale 2"27

Y := Y ADD O; A:= A<<I;

Y := Y ADD O; A:= A<<I;

Y := Y ADD O; A: = A<<I -- scale to i = 2"30

FI

END; -- end rout

PROC smult: -- scaled multiplication is equivalent to long multiplication

-- (32 bits operand, 63 bits result) but the lower 31 bits

2O

-- are truncated and discarded. The product of A*X will be

-- delivered in A shifted 31 times to the right.

-- If the product is negative the 2's complement is obtaine

-- after truncation. The factor X is always taken as positive

-- and a "I" in bit 31 (MSB) is not interpreted as a 2's

-- complement negative number.

BEGIN

INT facta,sign,product;

sign := A; -- make sign positive if A pos.; negative if A neg.

IF A < 0 THEN

facta := A;

Y := O;

A := Y - facta -- make A := ABS(A) [absolute value]

FI;

facta := A;

A := O;

Y := 32;

WHILE Y /= 0 -- test Y = 0 and jump if true. if Y /= 0 B is false

-- B always = 0 at beginning of DO

DO A := A >> 1; -- shift right, first shift has no effect since A = 0

-- on arrival, this will result in shifting partial

-- product(A) only 31 time right while X is shifted

-- 32 times.

A := A ADD O; -- clear B. This instruction is not necesary

X := X >> 1; -- put B (zero) in MSB; put LSB in B

IF B

THEN

A := A ADD facta;

IF B THEN A := 2; CALL error FI

FI;

Y := Y - i -- decrement counter

0D;

Y := sign;

IF Y >= 0 THEN RETURN -- A was positive, return positive

ELSE product := A; -- A was negative, make product neg.

Y := O;

A := Y - product

FI

END; -- end smult

PROC sdivide:

21

-- performs X/A*2"31 result in A. if X>=A result = 2"31-1. if A = 0

-- result = 2"31-I

BEGIN

INT divtemp,div,sign; -- local variables

Y := 1;

sign := Y; -- make sign positive

IF A > 0 AND X < 0

THEN

sign := X; -- make sign negative

Y := O;

X := Y - sign -- X := ABS(X)

ELSE

IF A < 0 AND X > 0

THEN

sign := A; -- make sign negtive

Y := O;

A := Y - sign -- A := ABS(A)

FI

FI;

divtemp := A;

A := O;

Y := 30;

A := A ADD O; -- clear B

REPEAT A := A << I;

X := X << 1;

IF X GE divtemp

THEN

X := X SUB divtemp;

A:=A+I

FI

UNTIL (Y := Y SUB I) B;

Y := sign;

IF Y >= 0 THEN RETURN

ELSE div := A;

Y := O;

A := Y - div -- make quotient negative

FI

END;

22

PROCerror:
BEGIN
STOP
END-- end error

FINISH

23

Appendix B: FORTRAN Yaw Damper Program

SUBROUTINE YAWDAMP (DELRYD)

C

C**** THIS ROUTINE IS THE YAW CONTROL SYSTEM

C

C* CAS

C* DELKYD

C* RBDEG

C* RESET

C* T

CALIBRATED AIRSPEED

RUDDER DEFLECTION DUE TO YAW DAMPER

YAW RATE, BODY AXIS

IS RESET MODE FLAG

TIME

KNOTS

DEG

DEG/SEC

LOGICAL

SECONDS

C

C

C

C

C

C

C

C

INCLUDE 'CAB2.COM'

INCLUDE 'CA737.COM'

INCLUDE 'CA737IP.COM'

INCLUDE 'CDEFLEC.COM'

INCLUDE 'CEOMOTN.COM'

REAL KPSIT,KPSDOT

DIMENSION VCAST(8), KPSIT(8)

DATA VCAST /-I.E30, 100., 122.4, 150.8, 206., 292., 450., I.E30/

DATA KPSIT / I., I., .765, .61, .5, .395, .31, .31 /

DATA IX/I/

DATA YS5/O./

DATA SCRYCS1, SCRYCS2 / 2 * O. /

DATA SCRYCS3, SCRYCS4 / 2 * O. /

DATA SCRYCS5, SCRYCS6 / 2 * O. /

XLIM(P, O, _) = AMINI(R, AMAXI(P, Q))

KPSDOT = ONED(CAS, IX, VCAST, KPSIT)

YSI = IIBDEG * KPSDOT * .84

YS2 = FOLAG(YS1, 3.33, RESET, SCRYCS1, SCKYCS2)

YS3 = WOUT(YS2, .143, RESET, SCRYCSS, SCRYCS6)

24

C

C

C

YS6= ¥$5..955

YS7 = FOLAG(YS6, 80., RESET, SCRYCS3, SCRYCS4)

IF (T .EQ. 0.) YS7=YS3

YS5 = (YS3-YS7)*9.15

YS5 = ZLIMCYS5,-4.,4.)

DELRYD=YS5

RETURN

END

FUNCTION 0NED(X, IXST, XST, FST)

C

C*_* THIS FUNCTION PERFORMS A I-DIMENSIONAL L00K-UP

C

C**** X IS THE DRIVER

C'*** IXST IS THE POINTER

C**** XST IS THE ARRAY OF BREAK POINTS FOR X

C***" FST IS THE ARRAY OF DATA POINTS

C

C

C

C

C

C

C

C

C

DIMENSION XST(1), FST(1)

IF (IXST .LE. 0) IXST = I

GOT0 3

I IZST = IXST - 2

2 IXST = IXST + 1

3 DELX = X - XST(IXST + I)

IF (DELX .GT. 0.) GOT0 2

DELX = X - XST(IXST)

IF (DELX .LT. 0.) GOTO 1

DELX = DELX / (XST(IXST+I) - XST(IXST))

25

C
0NED = FST(IXST) + DELX * (FST(IXST+I) - FST(IXST))

RETURN

END

C****

C

C****

C****

C****

C

C**** USE:

C

C**** OUT

C**** IN

C**** TAU

C**** RESET

C**** STATE

C**** ETAU

C

FUNCTION FOLAG(IN, TAU, RESET, STATE, ETAU)

C

C**** THIS FUNCTION INTEGRATES A FIRST-0RDER DIFFERENTIAL

EQUATION DESCRIBED BY THE TRANSFER FUNCTION:

C

C

OUT 1

IN TAU S + 1

OUT = FOLAG(IN, TAU, RESET, STATE, ETAU)

THE ANSWER - LAGGED IN

INPUT SIGNAL - VARIABLE TO BE LAGGED

TIME CONSTANT

.TRUE. IF WANT T0 HAVE NO LAG OR WANT TO I.C.

PAST VALUE 0F THE LAGGED OUTPUT

SAVED VALUE 0F (E T0 THE -H/TAU)

INCLUDE 'CAB2.COM'

LOGICAL RESET

REAL IN

C

C**** C0NSTANT TAU, SERIAL INTEGRATION

C

IF (.NOT. RESET) GOT0 2

C

C**** RESET MODE, N0 DELAY (OUT = IN) AND CALCULATE E T0 THE -H/TAU

C

STATE = IN

FOLAG = STATE

ETAU = EXP(-H/TAU)

RETURN

C

C**** 0FERATE MODE, IST ORDER LAG IN EFFECT

C

2 STATE = ETAU *(STATE - IN) + IN

FOLAG = STATE

26

C
RETURN

END

C****

C

C****

C****

C****

C

C**** USE:

C

C**** OUT

C**** IN

C**** TAU

C**** RESET

C**** STATE

C**** ETAU

C

FUNCTION WOUT(IN, TAU, RESET, STATE, ETAU)

C

C**** THIS FUNCTION INTEGRATES A FIRST-0KDER DIFFERENTIAL

EQUATION DESCRIBED BY THE TRANSFER FUNCTION:

C

C

OUT S

IN TAU S + I

OUT = WOUT(IN, TAU, RESET, STATE, ETAU)

THE ANSWER - WASHED OUT IN

INPUT SIGNAL - VARIABLE T0 BE WASHED OUT

TIME CONSTANT

.TRUE. IF WANT T0 HAVE N0 WASH OUT DR WANT T0 I.C.

PAST VALUE 0F THE WASHED OUT OUTPUT

SAVED VALUE OF (E TO THE -H/TAU)

INCLUDE 'CAB2.COM'

REAL IN

LOGICAL RESET

C

C**** CONSTANT TAU, SERIAL INTEGRATION

C

I0 IF (.NOT. RESET) GOT0 2

C

C**** RESET MODE, SET OUTPUT T0 ZERO AND SAVE PAST VALUE AND

C**** THE EXPONENTIAL

C

WOUT = O.

STATE = IN

ETAU = EXP(-H/TAU)

RETURN

C

C**** OPERATE MODE, COMPUTE THE NEW OUTPUT

C

2 STATE = ETAU*(STATE - IN) + IN

WOUT - (IN - STATE) / TAU

27

C

RETURN

END

28

Table 1. VIPER function field

FF= 0 D :=

1 Y :-

2 D:=

3 D:=

4 D:=

5 D:--

6 D:=

7 D

8 D

9 D

10 D

11 D

12 MF--0 D

13

14

15

~M -- Load M into D complemented

P then P := M -- Jump to M storing P in Y

Input -- Load input into D 1 Equivalent if

M -- Load M into D j' load inmediate
R + M, B := carry

R + M, stop on overflow

R - M, B := borrow

:= R - M, stop on overflow
:= R XOR M

:= R AND M

:= R NOR M

:= R AND ~M

:= R/2, sign bit copied -- shift right

MF=I D := R>>I through B -- circular shift right through B

MF=2 D := R*2, stop on overflow -- shift left

MF=3 D := R<<I through B -- circular shift left through B

STOP

STOP

STOP

29

Table 2. Scale Factors

CAS 0 .. +1000 Knots

/1024

4.7683 x 10 Knots/MU*

2,097,152 MU/Knots

KPSDOT 0.31 .. 1 RU*

/1

4.6566 x 10 RU/MU

2,147,483,648 MU/RU

RBDEG -20 .. +20 Deg/Second
/32

1.4901 x 10 Deg/Sec/MU

67,108,864 MU/RU

VYS1 -20 .. +20 RU

/32

1.4901 x 10 RU/MU

67,108,864 MU/RU

YSl -16 .. +16 RU

/16

7.4506 x 10 RU/MU

134,217,728 MU/RU

YS2 -3 .. +3 RU

/4

1.8626 x 10 RU/MU

536,870,912 MU/RU

YS3 -2 .. +2 RU

/2

9.3132 x 10 RU/MU

1,073,741,824 MU/RU

YS5P1 -1 .. +1

/1

4.6566 x 10 RU/MU

2,147,483,648 MU/RU '

YS5P2 -10 .. +10

/16

7.4506 x 10 RU/MU

134,217,728 MU/RU

YS5 -4 .. +4

/4

1.8626 x 10 RU/MU

536,870,912 MU/RU

YS6 -3.82 .. +3.82

/4

1.8626 x 10 RU/MU

536,870,912 MU/RU

YS7 -1 .. +1

/1

4.6566 x 10 RU/MU

2,147,483,648 MU/RU

MU - Machine Units

RU - Real Units
3O

Table 3. Example Run

Case Number

Wind Direction

Wind Speed , ,

Wind Type

Gust Amplitud
Gusts

Max. Relative VIPER Yaw Damper Error
Max. Relative FORTRAN YD Error

Max. Absolute VIPER Yaw damper Error
Max. Absolute FORTRAN YD Error

Average Relative VIPER YD Error

Average Relative FORTRAN YD Error

Average Absolute VIPER YD Error

Average Absolute FORTRAN YD Error

1

109.3300 degrees
5.604287 knots

-1

6.305861 fps
on

2
4.1937530 x 1(). 2

7.0957579 x 10 6
1.2159347 x 10
1.2509711 x 1()5

3.8307622 x 1() 5

9.0578076 x 1()5

4.3536136 x 1(_ 7

1.2325295 x 1(_ 6

31

r----i

DATA

BUFFER

m

ADDRESS

LATCH

A

"t

m

_ INSTRUCTIONLATCH

Figure 1. Viper Architecture

32

DATA

1/O

VIPER _ VIPc_

I 32KX8
PROM

STATUS STATUS CCht/I:tOL CONTROL I

I
4KX 8

PROM

Figure 2. VIPER Single Board Computer

8KX32

RAM

8039

DATA

ADDRESS

33

SUBROUTINE

CALL

SENSOR INPUTS &

ACTUATOR CONTROL OUTPUS

PROGRAM

737

SIMULATION

SUBROUTINE YAW DAMPER

SUBROUTINE
SUBROUTINE SUBROUTINE

DEVICE DRIVER

CALL

DEVICE

DRIVER

UNIBUS

DRS-DSS

POLLING

ALGORITHM

VIPER SBC

YAW DAMPER

Figure 3. Software Organization

34

4 Control

Logic

/
32

32

I

32

I
8

/
32

I rer:;It I

statusreg

I
data I
input

reg.

I I°oo,I
data

32

32

8

Figure 4. Interface Board

35

]_ ST_E X/1/1/1/1////////
m

W

Wl

STROBEI

=1-TAS-ID

Jlo ___J

1/01 _ /

(E

(1DO<

DATA,!1111111/,

DATA!!!1/////,

/

\

t

'///////////////,iX

'I//////////////////X
- 77 ns_. m_ d

" TRDA

mm_ww

/--

\

\

/

\

STABLE

STABLE

X//IIII//I

X/1/1/1/

TAS: Address Set-up
TAH: Address Hold
TRDA: Read Dta Available

30 nseconds minimum
20 nseconds minimum

150 nseconds maximum

Figure 5a. Interface Board Read Cycle

36

i

W

Wl

STROBB

i

,/

I/0

1/01

CK & INT

Ck & INT

\

\

STABLE X/I/1////////////

/

/

STABLE

\

\

\

/

/

XIIIIIIIIIIIIIIIIIDATAI

DATA

I
II11I/1/1/NI1/Z)(

40 max.--i_
in I 24 typ

STABLE

L

* All times in nanoseconds

X/l�1�1�1�������

TAS: Address Set-up
TAH: Address Hold

TWDS: Wdte Data Set-up

30 nseconds minimum
20 nseconds minimum
20 nseconds minimum

Figure 5b. Interface Board Write Cycle

37

II

_]

÷

I
!

]8

|

I

I

t
B

 ,lJ

E
11)

(1)

b.

" i" I i

32 LSB
DRS

data datum 1 X datum 2

DRS 8 MSB

ident. 1 X 2

input

data
register

datum 1 X datum 2 IX datum 2

Jdent.

register

t
VIPER
latch
signal

1 2 X" 2

t -T t -
VIPER VIPER VIPER VIPER VIPER Viper
ident, latch ident, latch ident, input

regist, signal regist, signal regist, data
read read read . regist.

read

is ident, is ident.
regist.. 2? regist. , 2?

(no) (yes)

if ident, reg., 2
then read datum 2

and request datum3
else call error handler

readagain
in case unstable
datawas latched

in first latch sequence

Figure 7a. Polling Time Diagram

39

32 LSB
DRS

datum 1X datum 2data

DRS 8 MSB
ident. 1 X 2

input

data

register

ident.

register

X

t
VIPER
latch

signal
(latch
during

unstable

transition)

) datum 2

2

VIPER
ident.

regist.
read

VIPER VIPER
latch ident.

signal regist.
read

is ident.

regist. = 2?
(assume yes)

if ident, reg. = 2
then read datum 2

and request datum 3
else call error handler

>t
Viper

input
data

reglst.
read

read again
in case unstable
data was latched

in first latch sequence

Figure 7b. Polling Time Diagram

4O

32 LSB
DRS

datum 1/X_ datum 2
data

8 MSB
DRS

ident. 1 X 2

input
data

register

ident.

register

×

X ?

VIPER VIPER
latch ident.

signal regist.

(latch read
during

unstable

transition)

datum 2 X datum 2

X 2

VIPER VIPER
latch ident.

signal regist.
read

×

VIPER VIPER
latch ident.

signal regist.
read

• J

2

Viper

input
data

regist.
read

is ident.

regist. = 2?
(assume no)

is ident.

regist. = 2?

(yes)

if ident, reg. = 2
then read datum 2

and request datum 3
else call error handler

read again
in case unstable

data was latched

in first latch sequence

Figure 7c. Polling Time Diagram

4!

Request Data X

Issue Interrupt

Latch Ident & Latch Ident &

Data Reg. _ Data Reg.

f Readldent. Reg. _ Readldent. Reg.

es

No

Call Error

Handler

Read Data Reg.

Figure 8. Polling Algorithm

42

O3
<

v

T

+

>.

>.

C
m

!

>-

L_

=m

43

Report Documentation Page
',1 _ * t_l,',,.'JI g.d,

1. Repofl No. 2. Government Accession No.

NASA I_'t-104098

4. Title and Subtitle

A Case Study for the Real-Time Experimental

Evaluation of the VIPER Microprocessor

7. Author(s)

Victor A. Carreno

Rob K. Angellatta

9. Performing Organization Name and Address

NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space

Washington, DC 20546

Administration

3. Recipient's Catalog No.

5. Repo_ Date

September 1991

6. Performing Organization Code

8. Performing Organization Report No.

10. Work Unit No.

505-64-10-05

11. Contract or Grant No.

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

15. Supplementaw Notes

Victor A. Carreno: Langley Research Center, Hampton, VA

Rob K. Angellatta: Lockheed Engineering and Sciences Company, Hampton, VA

16. Abstract

This paper describes an experiment to evaluate the applicability of the Verifiable Integrated Processor for
Enhanced Reliability (VIPER) microprocessor to real-time control. The VIPER microprocessor was invented by
the Royal Signals and Radar Establishment (RSRE), U.K., and is an example of the use of formal mathematical
methods for developing electronic digital systems with a high degree of assurance on the system design and
implementation correctness.

The experiment consisted of selecting a control law, writing the control law algorithm for the VIPER processor,
and providing real-time, dynamic inputs to the processor and monitoring the outputs. The control law selected
and coded for the VIPER processor was the yaw damper function of an automatic landing program for a 737
aircraft.

The mechanisms for interfacing the VIPER Single Board Computer to the VAX host are described in the
paper. The yaw damper control law as well as the Vista programming language for the VIPER are also
described. Results include run time experiences, performance evaluation, and comparison of VIPER and
FORTRAN yaw damper algorithm output for accuracy estimation.

17. Key Words (Suggested by Author(s))
Formal Methods
Design Correctness
Real-Tlme Control
Microprocessor
Scaling
Integer Arithmetic

19. Security Classif. (of this report)

Unclassified

18. Distribution Statement

Unclassified-Unlimited

Subject Category 33

1 o.;cu;ity (a, l" Noo,
1 Unclassif'ed..... / 44 22. PriceA03

m=

NASA FORM 1626 OCT

